Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Translational and Clinical Pharmacology ; : 30-36, 2016.
Article in English | WPRIM | ID: wpr-165360

ABSTRACT

We developed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of acetaminophen concentration in human plasma. Following protein precipitated extraction, the analytes were separated and analyzed using an UPLC-MS/MS in the multiple reaction monitoring (MRM) mode with the respective [M+H]+ ions, m/z 152.06 → 110.16 for acetaminophen and m/z 180.18 → 138.12 for phenacetin (internal standard, IS). The method showed a linear response from 1 to 100 µg/mL (r > 0.9982). The limit of quantitation for acetaminophen in plasma was 1 µg/mL. The intra- and inter-day accuracy ranged in the ranges of 94.40–99.56% and 90.00–99.20%, respectively. The intra- and inter-day precision ranged in the ranges of 2.64–10.76% and 6.84–15.83%, respectively. This method was simple, reliable, precise and accurate and can be used to determine the concentration of acetaminophen in human plasma. Finally, this fully validated method was successfully applied to a pharmacokinetic study of acetaminophen in healthy volunteers following oral administration.


Subject(s)
Humans , Acetaminophen , Administration, Oral , Healthy Volunteers , Ions , Mass Spectrometry , Phenacetin , Plasma
2.
Journal of Korean Society for Clinical Pharmacology and Therapeutics ; : 175-181, 2012.
Article in Korean | WPRIM | ID: wpr-138499

ABSTRACT

BACKGROUND: Metformin is an effective oral antihyperglycaemic agent for type 2 diabetes mellitus, with a variety of metabolic effects. In addition to controlling blood glucose level, it has been appeared to decrease the long-period complications of diabetes, including macrovascular disease. Few reports have addressed the metabolite profiling of metformin. The study was to evaluate if targeted metabolic profiling approach is sensitive enough to predict the therapeutic effects of metformin after a single oral dose. METHODS: A randomized, open-label, single-dose study was conducted in twenty eight healthy Korean male volunteers. To determine the concentrations of endogenous metabolites in their pre-dose and post-dose plasma samples, blood samples were collected before and at 2 and 6 h after a single oral dose of 500 mg metformin. Both Modular P/Modular D analyzer and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based metabolic profiling was performed. RESULTS: We quantified pre-dose and post-dose creatinine, blood urea nitrogen (BUN), lactic acid, 7 amino acids (lysine, glutamic acid, alanine, valine, leucine, phenylalanine, tryptophan), and 5 lysophosphatidylcholines (14:0, 16:0, 17:0, 18:0, and 18:1) using autoanalyser and UPLC-MS/MS. The postdose levels of alanine, lactic acid, glutamic acid, lysine, valine, leucine, phenylalanine, tryptophan, and lysoPC (18:1) were slightly decreased with statistical significance, but there is no clinical significance. CONCLUSION: In order to explore the potential endogenous metabolites associated with the therapeutic effects of metformin, further study including non-targeted (global) metabolite profiling is needed.


Subject(s)
Humans , Male , Alanine , Amino Acids , Blood Glucose , Blood Urea Nitrogen , Chromatography, Liquid , Creatinine , Diabetes Mellitus, Type 2 , Glutamic Acid , Lactic Acid , Leucine , Lysine , Lysophosphatidylcholines , Metformin , Phenylalanine , Plasma , Tandem Mass Spectrometry , Tryptophan , Valine
3.
Journal of Korean Society for Clinical Pharmacology and Therapeutics ; : 175-181, 2012.
Article in Korean | WPRIM | ID: wpr-138498

ABSTRACT

BACKGROUND: Metformin is an effective oral antihyperglycaemic agent for type 2 diabetes mellitus, with a variety of metabolic effects. In addition to controlling blood glucose level, it has been appeared to decrease the long-period complications of diabetes, including macrovascular disease. Few reports have addressed the metabolite profiling of metformin. The study was to evaluate if targeted metabolic profiling approach is sensitive enough to predict the therapeutic effects of metformin after a single oral dose. METHODS: A randomized, open-label, single-dose study was conducted in twenty eight healthy Korean male volunteers. To determine the concentrations of endogenous metabolites in their pre-dose and post-dose plasma samples, blood samples were collected before and at 2 and 6 h after a single oral dose of 500 mg metformin. Both Modular P/Modular D analyzer and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based metabolic profiling was performed. RESULTS: We quantified pre-dose and post-dose creatinine, blood urea nitrogen (BUN), lactic acid, 7 amino acids (lysine, glutamic acid, alanine, valine, leucine, phenylalanine, tryptophan), and 5 lysophosphatidylcholines (14:0, 16:0, 17:0, 18:0, and 18:1) using autoanalyser and UPLC-MS/MS. The postdose levels of alanine, lactic acid, glutamic acid, lysine, valine, leucine, phenylalanine, tryptophan, and lysoPC (18:1) were slightly decreased with statistical significance, but there is no clinical significance. CONCLUSION: In order to explore the potential endogenous metabolites associated with the therapeutic effects of metformin, further study including non-targeted (global) metabolite profiling is needed.


Subject(s)
Humans , Male , Alanine , Amino Acids , Blood Glucose , Blood Urea Nitrogen , Chromatography, Liquid , Creatinine , Diabetes Mellitus, Type 2 , Glutamic Acid , Lactic Acid , Leucine , Lysine , Lysophosphatidylcholines , Metformin , Phenylalanine , Plasma , Tandem Mass Spectrometry , Tryptophan , Valine
SELECTION OF CITATIONS
SEARCH DETAIL